
International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 175

Terminal++ for Robot Researcher Using C#

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

Orcid-ID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2ViceChancellor, Srinivas University, Mangalore, India

Orcid-ID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Subject Area: Computer Science.

Type of the Paper: Experiment based Research

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed In: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.5773848

Google Scholar Citation: IJAEML

International Journal of Applied Engineering and Management Letters (IJAEML)

A Refereed International Journal of Srinivas University, India.

Crossref DOI : https://doi.org/10.47992/IJAEML.2581.7000.0111

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0 International

License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Srinivas Publications (S.P.),

India are the views and opinions of their respective authors and are not the views or opinions

of the S.P. The S.P. disclaims of any harm or loss caused due to the published content to any

party.

How to Cite this Paper:

Sudip Chakraborty & Aithal, P. S., (2021). Terminal++ for Robot Researcher Using C#.

International Journal of Applied Engineering and Management Letters (IJAEML), 5(2),

175-182. DOI: https://doi.org/10.5281/zenodo.5773848

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.5773848
https://scholar.google.com/citations?user=Wb7oZPYAAAAJ
https://search.crossref.org/?q=10.47992%2FIJAEML.2581.7000.0111&from_ui=yes
https://doi.org/10.5281/zenodo.5773848

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 176

Terminal++ for Robot Researcher Using C#

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

Orcid-ID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2ViceChancellor, Srinivas University, Mangalore, India

Orcid-ID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: Sometimes our robot researcher needs a terminal program to exchange the data with

the robot or automation device. Nevertheless, the readily available terminal program lacks

some functionality that is most relevant to the researcher. We feel that a featured rich terminal

program can handle lots of communication overhead for the researcher and relieve them from

repetitive and time-consuming tasks. In mind for this, we researched and developed a utility

program. We added extra features like automatic send, change dynamic data, etc., so our robot

researcher can test the system communication better. In this paper, we demonstrated the utility

program in detail. It is built using C#, which is under the Microsoft dot net framework. The

code is uploaded to GitHub. Anyone can download and use it. It can be customized for their

need. All used classes are available in .cs format.

Design/Methodology/Approach: This is the software utility program built by the dot net

framework of Microsoft visual studio. It has a graphical user interface (GUI) and some object

classes. It has a serial and ethernet interface to test the channel. Once the medium is selected,

the application will send whatever is written in the input text box. The Data sending may be an

automatic or manual process. In manual mode, after typing the command, we need to press the

“Enter” key to send the data. In automatic mode, it will send automatically within the preset

interval. The transmit and receive content is displayed inside the list box.

Findings/results: sometimes, our project goes into a critical phase. We need to have good

tools to overcome the situation immediately. This is a helpful tool to trace the communication-

related issue. Using this tool, we can observe the outgoing and incoming data traffic. The robot

researcher can use it for their communication-related debug purposes.

Originality/Value: Using this terminal program, our robot researcher will get lots of benefits

where readily available utility programs cannot provide them. It has some unique features like

automatic sending, changing dynamic content, etc. It has a serial and ethernet interface

channel so that most of the device communication can be debugged through this interface

software. It is entirely free and open source. Anyone can download and use it for personal as

well as commercial purposes.

Paper Type: Experiment-based Research.

Keywords: Command Terminal, robot debug interface, serial communication interface,

ethernet client terminal, Enhanced terminal program. Open source terminal program

1. INTRODUCTION :

We use the terminal program to send the data to the device and receive the response from the connected

device. For a one-shot, we type and send through the command line. But for repetitive static and

dynamic content, sending data creates lots of issues. It takes time to send repetitively. For dynamic

range, send data leads prone to error only through command terminal. To avoid the scenario, most of

the time, we create the software based on our needs. To develop software from scratch is time-

consuming and costly. Our robot researcher may not afford time and cost. So, the only way is to use the

currently available free terminal program. The most presently available terminal program has some lack

of features that are most relevant for debugging purposes. A few of them are as below:

(1) The used command list is not visible easily.

(2) We navigate commands through the up/down key only.

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 177

(3) Automatic send is not available.

(4) A limited number of packet savings options are available.

Through our research, we developed a utility program, which has the following features :-

(1) Transmit and receive packets are displayed into a separate list box

(2) All incoming and outgoing packets are shown with a timestamp.

(3) The savings option for All log data.

(4) Automatic send to the connected device.

(5) The scan data is selected from command history by double click.

(6) The scanning interval is settable.

(7) All application configuration is saved by pressing the “Save config” button or automatically

saved on application close.

2. RELATED WORKS :

X. Lu, W. Liu et al. their works Based on sending the command to the robot over the Internet of things,

Through the TCP socket, the service-oriented robots get the command via a wireless medium. For

different activities [1]. B. Shimano worked on an automatic manufacturing robot. It is interacted with

both a supervisory control network and with various sensory devices. It includes high-level computer

programming facilities that allow professional programmers to develop special-purpose application

programs which simplify the operator interface [2]. L. Gong et al. their paper proposes a human-robot

cooperation scheme with wearable augmented glasses. The commands like STOP, PULLOVER,

TURN-LEFT are compiled and programmed as simplified patterns to control the robot body/hand

pantomime. Experimental results show that the proposed methodology and control scheme is feasible

in real-time applications with high real-time performance of less than 0.5s latency and open possibilities

of easing the traffic jam via simultaneously scheduling multiple traffic cop robots [3]. R. H. Taylor and

D. D. Grossman, in their paper, describe the architecture of a robot system designed both to work in an

integrated manufacturing environment and to support continuing research in programmable automation.

The system design objectives, major functional components, and the AML language are described [4].

In the paper, P. Plaza et al. review development platforms to present one alternative for students as part

of an educational environment. They cover several applications based on different development

platforms used currently [5]. Wei-Po Lee et al. present their work on the Khepera miniature robot. They

evolve a control system for a moderately complicated task. They first evolved the controllers in a

simulation and then transferred them to the miniature robot [6]. W. Jie et al. proposed a novel control

used to solve the trajectory tracking problem on a seven-degree-of-freedom robot manipulator. In their

article, a sliding perturbation observer (SPO) is used to estimate the disturbance from the environment

and modeling uncertainties. The stability is analyzed based on the Lyapunov functions for general and

fractional-order systems. Implementing a real robot manipulator demonstrated the effects and

performance of the new control method [7]. J. Zhang et al., in their paper, present the design and

implementation of a new indoor security system with a jumping robot as the surveillance terminal. The

captured photo is transmitted to the gateway in 3.68s with five hops at a 0.1% loss rate [8]. J. Choi et

al. proposed an adaptive model-free control with non-singular terminal sliding-mode (AMC-NTSM)

for high precision motion control of robot manipulators [9]. In their paper, J. O. Hamblen et al. describe

a new approach for a course and laboratory designed to allow students to develop low-cost robotic

prototypes. the other embedded devices feature Internet connectivity, I/O, networking, a real-time

operating system (RTOS), and object-oriented C/C++ [10].

The above all research works are most relevant in the current era. The send commands from GUI to

robots are either wired or wireless through various protocols like Zigbee or TCP/IP. The device or robot

is controlled through customized software. For the prototyping, customized software leads to some

delays. That is why for rapid prototyping, most of the cases need some readily available utility tolls to

debug the system. So, this utility tool is for those who want to debug communication systems as soon

as possible. So, our work may help the researcher with rapid prototyping.

3. OBJECTIVES :

The objective of this research is to provide an enhanced utility command-line interface. Our robot

researcher can send the command and receives the response efficiently. It has some extra functionality

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 178

that is suitable to test and debug the automation device or robot easily. When we debug any automation

device, we need to send data repetitively, which will take unnecessary delay if we do it manually. And

also, error-prone. So, we need to send commands autonomously. That is why we created a command-

line interface with some extended features to research made easy.

4. APPROACH AND METHODOLOGY :

Figure 1 depicts the block diagram of our application. The main object or coordinator object is the

Terminal ++ object. It manages all the connected classes. The user inputs the command through the

Command Input Text box. As we are familiar command line, we provide a textbox to send the data to

the remote device in the application. After typing the command, press the “SEND” button on the right

side of the command button or press enter key, which is trets as accept. There are several text boxes

around the application which are used to set up some communication parameters. Once set, all the

parameter is saved by pressing the save config button.

When the application is closed, it automatically saves the data—

no need to repeat after reopening the application. Figure 2 depicts

the configuration data is held in the Settings.json file. We can find

it inside the project folder. It should not alter. May cause error.

When the application is opening, reading the data, fill the

associated textbox. And when the application is closing, the data

save one by one into the file. For our audit purpose, we provide

log data. Whatever we send will go to the transmit log list box. The

receive log is filled upon receiving the data from the remote or

connected device. The command History log list box is filled with

a unique command. When we enter a command and press the enter

key or click on the send button, it checks from the command history

list box. If the same is present in the command history list box, it

will not append to the list box. Scan configuration is used to send

various commands automatically. The Serial port object and TCP/IP object is the channel to

communicate with the remote device.

After the application overview through a block diagram, let introduce the GUI elements depicted in

Figure 3.

Fig.1 : The block diagram of the application

Fig. 2: The Saving Parameter

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 179

Channel: In the top left, there is a “channel” group box. If we want to communicate with a remote

device through the serial port, we must select the “serial port” radio button. For TCP/IP enabled devices,

select the “Ethernet” radio button.

Serial Port Parameter: In this group box, two text box available. In the “Comm. Port” text box, we need

to enter which comm port is connected with the device with the running system. The available comm

port can be visible inside the device manager. The baud rate text box is the serial communication speed

that we can get from connected device specifications.

Ethernet Port Parameter: In this group box, there is two text field. One is the connected device IP

address, and another one is the IP port.

Receive time Out: The receive time out is one of the critical parameters. When we send the command

to the device, our application waits for the reply. How much time will it remain? That depends on

receive time-out text field value. It is preset data. Any time we can change this parameter. After

changing the parameter need to press enter. Then it will affect after subsequent fetch data. It may be

delayed if we do not enter a significant time because it is a blocking function. It will not return in the

main loop until any data is received or time out occurs.

Communication: Inside the communication group box, there are two buttons. One is “Connect,” which

is used to connect with the remote device. The “Disconnect” button is used to disconnect from the

connected device.

Save Config: The next UI element is the “Save Config” Button. Whatever settings are entered are saved.

It is minimized to repeat the same configuration when reopening the application. If we do not press the

Save config button, we should not worry. All settings are automatically saved upon closing the

application. The abnormal termination has not preserved the settings. In this scenario, the form closing

event is not fired before the application is stopped.

Clear All: This button is used to clear the transmit data, receive data, and command history content

from their respective list box.

Transmit Listbox: The transmit data is displayed here.

Receive Listbox: The received data is displayed here.

Command History List box: when we type some command, and press enter, the system checks the typed

content. If it is not entered as before, it will append to this history box.

Scan Parameter: This is the scan data interface. If we want to send data automatically, we need to enter

it here. Double click on the line from the command history list box that we want to add in scanning.

Fig. 3: Application Interface

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 180

After inserting the data, we can also modify it. In Every line, there is a enable check box. If the check

box is not checked, the application will not scan the data.

Command Input: it is the prime user input. In this text box, we enter the command to send.

Send button: after writing the command, press the “enter” key to send the connected device.

Clear Transmit Data button: This button clears the transmit data content.

Clear Receive Data Button: This button clears the receive data content.

Clear Command History Button: This button clears the command history.

Message box: it shows different notification content.

Clear Scan Label: One label, “clear Scan Data,” is on the top right side of the scan parameter group

box. It clears the scan data.

DashBoard: In the dashboard from the top, the first one is Connection LED. When we try to connect

with the connected device, this LED will turn green; if it fails, turn it into the RED. After successfully

joining, when we send the data to the remote device, the TX LED with glow, and if any data is received

from the connected device, the RX LED will glow. The “Count(TX)” read-only text box displays the

number of transmitting data packets. The “Count(RX)” read-only text box is displayed the receive

packet count of the remote or connected device.

Scan Parameter: Under the scan Parameter group box from the top, the first one is “Scan Interval.” Text

box. It is the scanning interval between lines. When we start the scan, from the top, the system begins

scanning one by one line. If the check box is not checked, the scanner skips the lines. The interval unit

is in a millisecond. The next one is “Running Row,” the read-only text box displays the running scan

row. The next one is the “Scan Start” button. It is used to start the scan. And “Scan stop” button is used

to stop the scan.

System Running Time: On the top-right text box, display the system running time.

5. EXPERIMENT :

Now is the time to do some practical experiments. Download the project from the Github repository.

The link is available from the recommendation section. We need to follow the below steps:-

1. Open the application.

2. Select channel from the channel-group box.

3. If the selection is the serial port, fill the “Serial port parameter.” For Ethernet, fill in the Ethernet

port parameter.

4. Then fill in the suitable receive time out parameter. By default, we can set 1000 milliseconds.

5. Press the connect button. If the device is successfully commenced, the Dashboard Connection

LED will go green and turn red if the error.

6. In the command Input textbox, enter the command and observe, the data is transmitted to the

remote/connected device. The transmitted information is displayed inside the transmit log. If

any reply is received against receive data, it will display inside the receive text box.

7. We can send the command automatically. From the command history list box, double click on

any line, adding to the scan Datagrid. Then set scan interval for the speed of the scanning of

each line. Then press the “Scan start” button. The scan line will scroll down one by one,

depending on the enabled check box. It will scan that line is enabled by a check box. To stop

the scan, press the “Scan stop” button.

That’s all.

6. RECOMMENDATIONS :

❖ The complete source code is available from https://github.com/sudipchakraborty/Terminal-

plus-plus-for-Robot-Researcher-Using-C-sarp

❖ For Microsoft visual studio 2019 edition download link

https://visualstudio.microsoft.com/thank-you-downloading-visual-

studio/?sku=Community&rel=16

❖ The above research work is reference only. Taking this project, we need to customize it. We

wanted to provide some ideas on building an enhanced terminal program for our research need.

https://github.com/sudipchakraborty/Terminal-plus-plus-for-Robot-Researcher-Using-C-sarp
https://github.com/sudipchakraborty/Terminal-plus-plus-for-Robot-Researcher-Using-C-sarp
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 181

❖ This application is not bug-free. We debug what we get at experiment time. May persists several

bugs, which can be debugged under more tests.

❖ We developed core functions only. The researcher can add some additional functionality for

better usability.

o We can include more communication channels like Bluetooth, Wi-Fi, Zigbee.

o In the real scenario, noise is imposed on actual sensor data. We can simulate here by

sending dynamic values.

o To make this robust, Error Handling may be reviewed.

❖ Any application-related suggestions are appreciated to sudip.pdf@srinivasuniversity.edu.in

7. CONCLUSION :

We observe how we can quickly build a featured rich terminal program for our robot researchers to

their work through this research work. It is a small but powerful application. Using this utility program,

we can send data to the connected device very efficient way. For repeated send, this tool is much more

effective. Source code is available, and anyone can customize and integrate it into their project without

any issue.

REFERENCES :

[1] Lu, X., Liu, W., Wang, H., and Sun, Q. (2013). Robot control design based on the smartphone. 25th

Chinese Control and Decision Conference (CCDC), pp. 2820-2823. DOI:

10.1109/CCDC.2013.6561425.

 CrossRef/DOI

[2] Shimano, B., Geschke, C., and Spalding, C. (1984). VAL-II: A new robot control system for

automatic manufacturing. Proceedings. 1984 IEEE International Conference on Robotics and

Automation, pp. 278-292. DOI: 10.1109/ROBOT.1984.1087187.

 CrossRef/DOI

[3] Gong, L. et al., (2017). Real-time human-in-the-loop remote control for a life-size traffic police

robot with multiple augmented reality aided display terminals. 2nd International Conference on

Advanced Robotics and Mechatronics (ICARM), 420-425. DOI: 10.1109/ICARM.2017.8273199.

 CrossRef/DOI

[4] Taylor R. H. and Grossman, D. D. (1983). An integrated robot system architecture. Proceedings of

the IEEE, 71(7), 842-856. DOI: 10.1109/PROC.1983.12682.

 CrossRef/DOI

[5] Plaza, P. Sancristobal, Fernandez, G. Castro M, and C. Pérez, (2016). Collaborative robotic

educational tool based on programmable logic and Arduino. Technologies Applied to Electronics

Teaching (TAEE), 1-8. DOI: 10.1109/TAEE.2016.7528380.

 CrossRef/DOI

[6] Wei-Po Lee, J. Hallam and H. H. Lund, (1997). Applying genetic programming to evolve behavior

primitives and arbitrators for mobile robots. Proceedings of 1997 IEEE International Conference

on Evolutionary Computation (ICEC '97), 501-506. DOI: 10.1109/ICEC.1997.592362.

 CrossRef/DOI

[7] Jie, W., Yudong, Z., et al. (2020). Trajectory Tracking Control Using Fractional-Order Terminal

Sliding Mode Control with Sliding Perturbation Observer for a 7-DOF Robot Manipulator.

IEEE/ASME Transactions on Mechatronics, 25(4), 1886-1893. DOI:

10.1109/TMECH.2020.2992676.

 CrossRef/DOI

[8] Zhang, J., Song, G. Qiao, G., Meng, T. and Sun, H. (2011). An indoor security system with a

jumping robot as the surveillance terminal. IEEE Transactions on Consumer Electronics, 57(4),

1774-1781. DOI: 10.1109/TCE.2011.6131153.

 CrossRef/DOI

mailto:sudip.pdf@srinivasuniversity.edu.in
doi:%2010.1109/CCDC.2013.6561425.
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/ROBOT.1984.1087187
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/ICARM.2017.8273199
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/PROC.1983.12682
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/TAEE.2016.7528380
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/TAEE.2016.7528380
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/TMECH.2020.2992676
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/TCE.2011.6131153

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, December 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 182

[9] Choi, J., Baek, J., Lee, W., Lee, Y. S. and Han, S. (2020). Adaptive Model-Free Control with Non-

singular Terminal Sliding-Mode for Application to Robot Manipulators. IEEE Access, 8(1),

169897-169907. DOI: 10.1109/ACCESS.2020.3022523.

 CrossRef/DOI

[10] Hamblen, J. O. and van Bekkum, G. M. E. (2013). An Embedded Systems Laboratory to Support

Rapid Prototyping of Robotics and the Internet of Things. IEEE Transactions on Education, 56(1),

121-128. DOI: 10.1109/TE.2012.2227320.

 CrossRef/DOI

file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/ACCESS.2020.3022523
file:///C:/Users/P.S.%20Aithal/Downloads/10.1109/TE.2012.2227320

