
International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 119

Demonstration of Modbus Protocol for Robot

Communication Using C#

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2ViceChancellor, Srinivas University, Mangalore, India

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Subject Area: Robotics.

Type of the Paper: Experiment-based Research.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed In: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.5709235

Google Scholar Citation: IJAEML

International Journal of Applied Engineering and Management Letters (IJAEML)

A Refereed International Journal of Srinivas University, India.

Crossref DOI : https://doi.org/10.47992/IJAEML.2581.7000.0108

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0 International

License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Srinivas Publications (S.P.),

India are the views and opinions of their respective authors and are not the views or opinions

of the S.P. The S.P. disclaims of any harm or loss caused due to the published content to any

party.

How to Cite this Paper:

Sudip Chakraborty, & Aithal, P. S., (2021). Demonstration of Modbus Protocol for Robot

Communication Using C#. International Journal of Applied Engineering and

Management Letters (IJAEML), 5(2), 119-131.

DOI: https://doi.org/10.5281/zenodo.5709235

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.5709235
https://scholar.google.com/citations?user=Wb7oZPYAAAAJ
https://search.crossref.org/?q=10.47992%2FIJAEML.2581.7000.0108&from_ui=yes
https://doi.org/10.5281/zenodo.5709235

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 120

Demonstration of Modbus Protocol for Robot

Communication Using C#

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2ViceChancellor, Srinivas University, Mangalore, India

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: The Modbus is the trusted name in the industrial automation communication domain.

It is a pretty simple protocol to implement and so very popular to the industrial communication

personnel. Nowadays, some industrial robots are also capable of communicating through

Modbus. So, our robot researchers frequently face the challenge of communicating with

Modbus-enabled devices or robots. They need to know the protocol in detail before integrating

it into their project. Its learning curves are a bit higher because of the lack of document which

is practical oriented. The protocol selection, packet structure, CRC, or LRC calculation need

to maintain precisely as standards; otherwise, the Modbus exception may happen. We

experience those scenarios. Through our practical experience, we learned what is required for

a new researcher who wants to implement Modbus in their project. In this paper, we

demonstrate the Modbus packet structure and implement it with several practical examples.

Finally, to test the written code, we provide simple tools which are easy to use and

customizable. The researcher can easily integrate into their research project. The complete

project source code is available in Github.

Design/Methodology/Approach: The Modbus is the standard protocol to communicate

between or among the devices. We need a better understanding of it and interface software to

test around all aspects. Here we described some practical examples. The GUI is created using

C# language inside the Microsoft Visual Studio. The application has several capabilities. In

the TCP/IP mode, It can be a server or client. In RTU mode, it can play as a Master or slave

device. We can also run two instances in a single system. To communicate between two running

apps in RTU mode, we need virtual loopback software, two physical comm port, or two USB

to Serial modules. For Modbus TCP mode, we can test within the system using the localhost

address (127.0.0.1) or need an IP address for a different.

Findings/results: The robot researcher can find helpful information about communicating the

robot through the Modbus protocol. The practical example can help them to create packet

purser. The functional CRC algorithm code can be used for better understanding and

implementation into their project.

Originality/Value: This work has some different features than other available utilities. We

added features based on our research needs. Our created application is a little bit different

from a professional approach. Various display formats are available in our GUI. That makes

a difference in the originality of this work. Our GUI can be master, slave, server, or client,

which is rarely available.

Paper Type: Experiment-based Research.

Keywords: Modbus Communication, Robot Communication, Modbus RTU master, Modbus

RTU client, Modbus TCP Master, Modbus TCP client

1. INTRODUCTION :

Modbus is one of the popular protocols to exchange data between devices in the industrial automation

field. In our one project, it was required to implement Modbus protocol to fetch the data from the robot.

We started searching the documents on Modbus. Our experience was not very good. There are

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 121

enormous documents available on Modbus. But few of them focus on the implementation level.

Their paper lacks a correct Packet structure, and in most cases, their CRC algorithm is not

valid. Our realization is as below:

❖ Most of the documents are incomplete.

❖ Less information for practical implementation

❖ The software utility is not open-sourced, or code is not available.

❖ Most of the software needs to purchase; in most cases, we cannot afford it.

❖ In some software is not research-centric, whether they provide little functionality.

❖ We didn’t find any software to get the data in different formats according to our requirements.

We started our research from here. We achieved our goal. We implement Modbus into our

project. After completing our research work, we realized that it should be documented and

provided to our robot researcher struggling to implement Modbus into their project. We

demonstrated the Modbus protocol and packet structure as practical as possible. We created a

GUI utility software for experiment with the Modbus.

2. RELATED WORKS :

Tamboli, S. et al, in their paper, demonstrate how to communicate with an Industrial batch processing

system in which the temperature parameter is precisely controlled by several logic. They use Modbus

RTU and Modbus TCP for their communication backbone. [1]. Jaloudi, S, in his research, study on

polling-based and event-based protocols under Industrial Internet of Things (IIoT) environment. The
two scenarios are proposed to build the IIoT environment. The first scenario considers the Modbus TCP

as an IoT protocol and builds the environment using the Modbus TCP [2]. G. Ebenhofer et al. present

their development approach using development tools and explicitly highlight useful extensions added

for a smooth integration of heterogeneous components of various frameworks [3]. H. Lin et al. provide

a solution enabling the innovative robotic arm (Staubli) to convert its original communication protocol

(SOAP/WSDL) into the role of an OPC UA server. The solution is successfully integrated into

ERP/MES manufacturing production systems. The proposed method can help basic IoT robots

seamlessly embed in ERP/MES manufacturing systems [4]. Tarek Al-Geddawy presents a method to

build a simulated changeable learning factory and link it to the physical system to create a digital twin.

The studied learning factory (LEAF) is an open-source low-cost changeable automated system. The

method uses the open-source Modbus TCP and OPC UA industrial communication protocols to

establish the connection between the physical modules and the digital objects. [5]. M. Hemmatpour et

al., in their work, describe the development of a distributed industrial IoT gateway, called DIIG, able

to relay industrial network data to a centralized data store. DIIG exploits a real-time client-server

programming model based on S7 communication and Modbus TCP protocols [6]. Qingdao Huang et

al., in their paper, control the furnace temperature using fuzzy logic. For remote communication, they

used the Modbus/TCP industrial Ethernet via OPC [7]. Maldonado V et al., in their research, present

the development of a low-cost industrial data server for communicating Modbus TCP devices and

Windows applications by using a database as a temporary storage space [8]. X. Xiang et al. present a

real-time and reliable communication system for a newly developed hybrid underwater robotic vehicle

(HURV), enabling the vehicle's state monitoring and teleoperation mode based on the industrial

Ethernet Modbus/TCP via the fiber-optic communication channel [9]. G. Hewei et al. developed a

friendlier human-machine interface. They communicate with the manipulator through TCP/IP

communication protocol, and the communication is developed using Socket technology under the

C++MFC environment [10]. W. Jingran et al., in their paper, focus on the security problems existing in

industrial communication protocols, study the security protocols to guarantee the secure transmission

of industrial data, and realize the end-to-end identity authentication and data encryption transmission

on Modbus/TCP protocol [11]. The above-included papers are suitable to implement the Modbus

protocol. But lack some explanation on Modbus in detail which would be helpful for new researchers.

3. OBJECTIVES :

Our object is to provide practical information on Modbus communication to the new researcher for

Modbus-enabled robotics communication. Need some learning curve to implement Modbus

communication. Here we provide information with practical examples so that anyone can implement

Modbus with little effort. For easily understanding, we capture real-world data from Modbus running

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 122

device. To test and debug on Modbus, we need one software utility tool. We created this utility tool

using C# inside the Microsoft visual studio community edition. Our researchers can test, debug, and

finally can be integrated into their research works.

4. APPROACH AND METHODOLOGY :

Let us see what is going on behind the scene, which is depicted in figure 1. We create a Modbus Manager

object which is responsible for managing all Modbus communication. All elements of Graphical User

Interface (GUI) interact with Modbus Manager. The Modbus Common object is assisted to the Modbus

manager providing some Modbus-related function. In the Modbus Manager, RTU Master/Client and

TCP Server/Client

objects are created.

According to the

Application Mode

selected by the User, the

request and response are

handled by the specific

channel. In our c#

application, we

integrated four types of

popular functionalities in industrial automation (figure 2). Modbus RTU Master/Slave and Modbus TCP

Server/Client mode. In the TCP mode, communication happens through a socket on an ethernet

medium. The server always stays in an active listening mode, and the client initiates the contact. The

client requested to send the required data providing function code, memory start address, number of a

16-bit register. In this mode, we do not care about CRC checks. The TCP/IP protocol takes care of

packet health like integrity, packet corruption, etc.

Figure 3 depicts the Modbus TCP request packet

structure. The Modbus TCP packet structure is on

the left side, and on the right side, one request

packet example is displayed. The index 0 and 1 are

transaction identifiers. It is a 16-bit variable. When

we send a request, take the variable, convert it into

2 bytes and push to buffer index 0 and 1. index 0 is

LSB, and index 1 is MSB. Some applications are

not swapped LSB and MSB. Index 2 and 3 are

protocol identifiers by default 0x0000. The buffer

index 4 and 5 are message lengths. The length is

calculated from index 6 to the end, i.e., byte index

11. Buffer Index 6 byte is the unit identifier. This is

the device address, which is connected to the

communication network. Usually, the network is

built by RS485 or ethernet framework. Every device

has one unique id. Inherently Modbus

Fig. 1: Application Block Diagram.

Fig. 2: Application Block Diagram.

Fig. 3: Modbus TCP request Packet

Structure

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 123

communication is broadcast type. When the master requests some data, it reaches all the connected

devices. The only device that replies matches with the unit identifier field in the received packet.

The byte index 7 is the Function code. There are several functions for different requests—the green box

list the function code list. The byte index 8 and 9 is the first register address. in the device, the internal

data structure is mapped with the

memory address. This first

register address is a 16-bit

address. Converting from 16bit

variable into two bytes, push into

buffer Index 8 and 9. Index 10 and

11 are the number of 16-bit

register requests. Figure 4.3

depicts the allocated coil or

register number range associated

with IO type.

The right side of figure 4 depicts one example of the request packet. Request for some data initiates by

creating a byte array. Then push the data and send it through the socket. In the figure 4.2, Byte index 0

and 1 is 0x18, 0x01. It needs to swap the value. It is

finally 0x0118. The decimal value is 280. Usually, It is

increased sequentially, i.e., increment by 1. Byte index

2 and 3 is 0x0000 is protocol identifier. Index 4 and 5

is 0x006. It is byte count in the message buffer. This is

the number of bytes present in the buffer that starts from

index 6. The buffer index 6 is 0x01 which is device id.

Theoretically, the device that may be present in the bus

is 256. But in RS485 architecture, up to 31 devices can

communicate well with the master. The index 7 is

0x03—the function code. Index 8 and 9 is 0x0000,

which starts memory address. The buffer Index 10 and

11 is 0x0001, which is requested, 16-bit register count.

Figure 5 depicts the Modbus TCP response packet. The

transaction identifier field is the same value as the

request packet. When the server device/application

responds to the client, purse the request packet, save the transaction identifier field, and push the same

data to the response packet buffer. The protocol identifier is the same, i.e., 0x0000. Then message length

is the byte length, i.e., from index 6 to the last byte of the transmit buffer. The unit identifier and function

code are the same as the request packet. The data byte count is placed into index 8. Up to index eight is

fixed. The payload or data starts from index 9.

On the right side of figure 5, We see the example of the response packet. Before sending the response,

we create a byte buffer. It can be any length. But

need to assure the buffer length should not exceed

the request data length. If it happens, we can reply

by exception packet. Buffer index 0 and 1 is the

transaction identifier. It is pushed from the request

packet. Index 2 and 3 is the protocol identifier, by

default 0x0000. Index 4 and 5 is the byte length

present in the response packet that starts from index

6. Index 6 is 0x01, which is the device address.

index 7 is 0x03 which is function code. Index 8 is

0x02 that is a number of data as a byte. The data

byte starts from index 9. Index 9 and 10 is data in hex

0x04d2—decimal value 1234.

Figure 6 depicts the sample packet of Modbus TCP, which is captured from the live system. The four

data example has been given.

Fig. 4: Memory address range of Modbus register

Fig. 5: Modbus TCP Response Packet

Fig. 6: Modbus TCP sample data Packet

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 124

Figure 7 depicts the Modbus RTU request packet structure. The left side of the figure shows the packet

structure, and on the right side, we provide an

example of a packet. The slave device receives a

pack of 8 bytes. The first index of byte buffer is

slave address. Slaves should not process the packet

further if the address does not match its address.

Index 1 is function code. Index 2 and 3 is the first

read register address. This is the first location from

where we want to read the register content. It is a

16-bit address—the two-byte convert into a 16-bit

value. Index 4 and 5 is the number of 16-bit data

count. Index 6 and 7 is the CRC of the received

packet. The CRC is calculated from index 0 to

index 5. If the calculated CRC matches with the

received CRC, we receive the packet. Else discard.

On the right, we see an example. The index 0 is the

device address. Index 1 is function code. Index 2

and 3 is the starting address of request data. Index 4

and 5 is the number of 16-bit data. Index 6 and 7 is

the CRC of the received packet.

Figure 8 depicts the Modbus RTU response packet.

The index 0 and 1 index are the same as the received

packet. After receiving the packet from the master,

it is pursued at the slave end and stored in the

associated register. When we create the response

packet, we push the data into transmit byte buffer.

Slave address and function code we push into

transmit buffer. Index 2 is the data count as a byte.

From index 3, move the payload or data as a byte.

Then we calculate the CRC and push it to the end of

the packet.

3 and 4 is the data 0x0003. Index 5 and 6 is second data 0x5571. Calculating CRC from 0 to 6, insert

the CRC at 7 and 8 indexes. The CRC position is changed on the data count into the packet.

Fig. 7: Modbus RTU Request Packet

Fig. 8: Modbus RTU Response Packet

Fig.- 9: Modbus RTU Sample Data Packet

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 125

 Figure 9 depicts the Modbus RTU sample packet which is received from the live system.

Figure 10 provides an applicable code for the CRC algorithm, which is running into our application.

The two approaches are popular for CRC calculation. Lookup table and calculation-based approach.

The lookup table-based approach is computing efficient and consumes some memory to store the table

into the ROM. Where memory is not limited, we think lookup table-based approach. Another one is the

calculation-based approach. It takes less memory but takes some CPU cycles to calculate the CRC value

of the received packet. Where memory space is limited, we can think about the algorithm-based

approach to process the CRC.

Fig. 10: CRC algorithm for Microcontroller and C#

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 126

Figure 11 depicts several function code practical examples. When we prepare request and response

packets, we need to insert the proper function code. Every function code is mapped with a specific

memory address, so improper function code gets data from the wrong place. The critical application

may cause a severe issue for operation. Need CRC checking to eliminate corrupt packet processes.

5. EXPERIMENT :

Figure 12 depicts our Modbus interface GUI. Before doing some experiments, Let us introduce this

interface which we have already developed.

Fig. 11: Function Code Example

Fig. 12: Modbus Test Interface

4.11 Modbus TCP request Packet

Structure

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 127

Apps Mode: We can select the application mode from the top-left group box. We can choose RTU or

TCP mode. In RTU mode, we can select master or client.

Our software can be a master or client as well as a slave

or server. Most of the utility software, both feature is not

available. Our software is not a commercial product. So,

we included this feature for our research purpose. Using

this feature, we can run two application instances on the

same PC with a different configuration. To run this

feature on the same computer, we need two external

USB-Serial ports. One Port will be connected with the

master application, and another will be associated with the

client application. In figure 13, using USB Hub, we

combine two USB to serial converter modules. One module TX connected with another module RX

and vice versa. The ground is common for both modules. We also have another option like a virtual

comm port. Using a virtually comm port, internally be connected between two ports. If we select the

RTU Master or TCP client radio button, The application will poll or request slave or server device data.

The received data is populated into a data grid. For RTU Slave or TCP Server mode, our application

can respond to the master request. When the master requests some data, it receives it and responds. The

data will be sent from Datagrid. For our experiment, we can change the Datagrid value also. The various

filling option is available below the Datagrid.

TCP Device Parameter: The TCP device parameters are required in TCP client mode. Before

connecting with the remote Modbus TCP server, we need to set the remote device IP address and default

Modbus port 502. If the local and remote apps are on the same computer, the client application IP

address will be 127.0.0.1, i.e., localhost.

RTU Comm Setup: for Modbus RTU mode, we need to enter COM port and baud rate. The assigned

port name is available inside the windows device manager. For the baud rate, we need to study the

device specification or user manual.

Connection: After TCP device parameter setup or RTU COM. Setup, need to press connect. If the

communication is established, the comm. Status LED will turn green. If not, it turns into a red. The

disconnect button is used to discontinue the communication.

Display: The display section is used to set the display data format. Four types of format are available

ASCII char or ASCII value or HEX, or Int16 decimal format. If it is not sufficient, we can add more

display formats. C# programming knowledge is mandatory to change something.

Save Config: after the application starts, we change some configurations to run our application.

Pressing The save config button, we can save configuration data. The configuration data is also

automatically saved upon closing the application.

Device Parmeter: Some device-related settings are available in this section. The slave address field is

the device id. In RTU master or TCP client mode, insert this value as unit id to the request packet. When

apps are set as Modbus clients, this field is used to compare with received packet id. If the id matches,

the packet is processed further. Else the packet is discarded. The address text field is used as the start

read address when apps run in RTU master or TCP client mode. The length textbox value is used as 16

bits register in RTU master or TCP client mode. The function Combobox is used to select the function

code. The chosen function code is inserted into the transmitting packet when apps run on RTU master

or TCP client mode. The packet ID field is read-only. When apps run in TCP client mode, this textbox

value is used as a transaction identifier value. After one transaction, this value is incremented by 1. The

request count field is also another read-only textbox. When apps run in RTU slave or TCP server mode,

it indicates how much time requests for data from RTU master or TCP client.

Polling Parameter: under this section, some data polling-related parameters are present. After

connection, we need to start a timer that will check every millisecond of any request from outside the

application. If any request is available, the application will execute send replies back to the outside of

the apps. So after connecting, the following essential activities are to start the polling. The start button

is for start polling and any time to stop polling need to press the stop button. We can set polling intervals.

This interval is used when this application is used to fetch data from outside of the apps. The number

of poll fields is used to see how much time send data request and valid response field indicates that

several correct responses get from an external application that may be Modbus RTU client or Modbus

TCP server in Modbus TCP mode. We can reset the counter any time by pressing the reset counter

Fig. 13: Master-Slave using 2 Port

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 128

button. The data exchange between the application and device RX and TX indicates receiving and

transmitting. The READ button is used to read only once and non-stop read if we checked on continue

read. The application will automatically read the data from the external device within the polling

interval value.

Data Write: if we want to write any data to the device from our application, this section will help us.

It is used in a master mode in Modbus RTU or TCP client mode. First, select the data grid cell in which

data we want to write. The corresponding row and column will display in the text box. The specific

address location will correspond. Now we can change the data into the textbox, or it will take from grid

data by default. Then press update. It will, by default, send the data to the client using function code 06

that is to write a single register.

CRC Calculator: Sometimes, we need to calculate CRC. We take the help of an online

CRC calculator. Here we provide a CRC calculator for our research work. When we

need to calculate CRC on a given array, we need to press the button. A separate window

will open. In the data grid, we need to fill the data from the top row. After all, entries

need to press the CALCULATE CRC button. The result will be displayed in the CRC

box. The result is swapped. The LSB first, then the MSB. For repetition, we need to

clear all entries. So press the ROW Clear button to remove the rows. Then again, we

can start. Figure 14 depicts the CRC calculator window.

Transmit Data: Whatever data we send to the outside of the application. It will show

here. It is used for debugging purposes also. We can watch these windows and can see

the packet is sent to the outside of the application is correct or not. It is

too practical for first-time algorithm development. To clear the log, the

clear log button is provided.

Receive Data: The receive data box is used to audit the data. Whatever the data is received is shown

here. It is used to show the data sent from outside of the apps. This box can be cleared through the

Clear Log button. The Keep Top checkbox is used to keep the last data on top. If it is not required, it

should be unchecked.

Message box: This textbox shows various messages. Generally, any application shows a different

message through the message box. It is an unpleasant experience. To display the content silently, we

provide the message box to see the notification without interruption.

Data Grid: The data grid displays incoming data when the application is in RTU slave or TCP client

mode. This data grid is also used when we send the data in RTU master or TCP server mode. Click on

the associated Datagrid cell, update the cell value, and press enter to change the data.

Dummy Data: The below of the Datagrid is the dummy data manipulation section. We can see the

Dummy data section. From the left side, the first button is to clear the data grid row selection. The

Random fill button is used to fill Datagrid with random Uint16 data. It is used basically for dummy data

sent to the device or outside of the application. The fill button is used to fill the data grid with

conditioned data. The first data field needs to fill first, which data would be the first, put here. Then if

the following data will increment, checked on-increment. And then need the following information is

incremented by. This field data will automatically increment. Then finally, press the fill button. When

we press the “Auto Fill start” button, The Datagrid data is filled with random data every one-second

interval. To stop this, press “Auto Fill Stop.”

Now we can do some practical experiments with the Modbus protocol through Modbus interface

software. We need to download our project From the GitHub repository. To open the project file, we

need to install the Microsoft visual studio community edition. All Link is available in recommend

section. After installing the visual studio IDE, we can open the project. Under the build menu, clean

and build the solution. After successfully building, from debug menu, we can press start debugging. If

our utility software is open, it looks like figure 5.1. now start our communication—four types of tests

we can execute through it. The procedure is explained below.

RTU Master Mode: if we have any slave device and want to fetch data from that device, select RTU

Master.

1. Open our application. From the “App Mode” group box (Top-Left), click the “RTU Master”

radio button.

Fig. 14: CRC Calculator

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 129

2. Under the “RTU Comm. Setup” group box Enter PORT and Baud rate. The assigned PORT

number can be found from the device manager and the baud rate from the device

specification.

3. Press the “Connect” button in the “Connection” group box if the comm connects the

application. Object/device, “comm. Status” LED will turn green. Else will glow red.

4. In The “Device parameter,” group box enters the “Slave Addr.”, “Address,” and “Length”

text fields. Form function combo box, select desired function.

5. From the “polling Parameter” group box, press the “START” button. Check the “Continue

Read” check box.

6. That’s it. The received data will display in the Data grid.

7. Whatever configurations are entered are saved upon closing the application by the top-right

close button, and the “Save Config” button can do the same action. When the application

reopens, all configurations will be retrieved into their respective field.

RTU Slave Mode: if we have any Modbus Salve device/application and want to provide data to the

device/application, from App Mode, select “RTU Slave” and need to configure it as below.

1. Under “RTU Comm. Setup” Enter PORT and Baud rate. PORT can be found from the device

manager and baud rate from device specification.

2. Press the “Connect” button in the connection group box if the application is connected with

the device/application, comm. Status LED will turn green else red.

3. The “Device parameter” group box only enters the “Slave Addr.”

4. From the “polling Parameter” group box, press the “START” button.

That’s it. The master device/application will get the data from the data grid. We can change data grid

data. If we press the “Auto Fill start” button, The grid data will change randomly with a one-second

interval. The auto-fill can be stopped by pressing “Auto Fill Stop.” Button.

TCP Server Mode: if we have any Modbus TCP client device/application, we can provide data to the

device/application. We need to follow the below steps.

1. From Apps Mode, select “TCP server.”

2. Press the “Connect” button in the connection group box if the application is connected with

the device, comm. Status led will turn green. Else turn red.

3. The “Device parameter” group box enters the “Slave Addr.”

4. From the “polling Parameter” group box, press the “START” button.

That’s it. If data is transmitted and received, TX and RX LED will glow. We can change the “DATA”

provided to the client as discussed in the RTU Slave Mode.

TCP client Mode: if we have any Modbus TCP server/application and want to fetch data to our

application, we need to follow the below steps.

1. From App Mode, select “TCP client.”

2. In “TCP Device Parameter,” enter the IP address of the server application/ device. The same

system will be “127.0.0.1”. The Port number is that of the server Communicates.

3. Press the “Connect” button.

4. In the “Device parameter,” fill “Slave address.”, “Address,” and “Length” fields.

5. From the “polling Parameter” group box, press the “START” button.

That’s it. The reading data will display in the Datagrid.

6. RECOMMENDATIONS:

❖ The complete source code is available from

https://github.com/sudipchakraborty/Demonstration-of-Robot-Communication-On-Modbus-

Using-C-Sharp

❖ For Microsoft visual studio 2019 community edition, download the link

https://visualstudio.microsoft.com/thank-you-downloading-visual-

studio/?sku=Community&rel=16

https://github.com/sudipchakraborty/Demonstration-of-Robot-Communication-On-Modbus-Using-C-Sharp
https://github.com/sudipchakraborty/Demonstration-of-Robot-Communication-On-Modbus-Using-C-Sharp
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 130

❖ For this research work, we used Modbus utility software to test our application. We can

download it from https://sourceforge.net/projects/qmodmaster/files/latest/download

❖ The above research work is reference only. Taking this project, we need to customize it. We

wanted to provide some ideas to the new researcher on how Modbus works, communicate

through a serial port, TCP/IP socket communication.

❖ We can run more than one application instance with the different configurations to understand

Modbus better.

❖ This application is not entirely bug-free. We debugged what we got at experiment time. May

persists several bugs, which can be debugged under more tests.

❖ We developed core functions only. The researcher can add some additional functionality for

better usability.

o Using our Auto Fill start/stop button, we can change the random value of the entire

grid. Sometimes may need to change incrementally or randomly to specific data. It is

required for sensor simulation.

o In the real scenario, noise is imposed on actual sensor data. We can simulate here by

changing the grid value by noise value generated by some algorithm or using the lookup

table.

o For accessible audit features, we can add a data search option.

o Background color may be changed change for different app modes to identify at a

glance.

o To make this robust, Error Handling may be reviewed.

❖ Any application-related suggestions are appreciated.

7. CONCLUSION :

The Modbus is a popular protocol in the industrial automation domain. Our robot researcher may need

to integrate the protocol to communicate with Modbus-enabled devices. On the web, most of the

available documents are not practical oriented. Our new robot researchers face challenges in integrating

the Modbus into their project. Because lots of issues like the CRC algorithm must be accurate, packet

parsing and response packet should be precisely in order, etc. Otherwise, the interface throws an error.

In this paper, we provide some practical-oriented documentation so they incorporate the Modbus easily.

We provided interface software also, so initially, they could start experiments without writing any code.

REFERENCES :

[1] Tamboli, S. Rawal, M. Thoraiet, R. and Agashe, S. (2015). Implementation of Modbus RTU and

Modbus TCP communication using Siemens S7-1200 PLC for a batch process. International

Conference on Smart Technologies and Management for Computing, Communication, Controls,

Energy and Materials (ICSTM), 258-263.

 Google Scholar CrossRef/DOI

[2] Jaloudi, S. (2019). Communication Protocols of an Industrial Internet of Things Environment: A

Comparative Study. Future Internet 2019, 11, 66.

 Google Scholar CrossRef/DOI

[3] Ebenhofer, G., Bauer, H., Plasch, M., Zambal, S., Akkaladevi, S. C. and Pichler, A. (2013). A system

integration approach for service-oriented robotics. IEEE 18th Conference on Emerging

Technologies & Factory Automation (ETFA), 2013, 1-8.

 Google Scholar CrossRef/DOI

[4] Lin H. and Hwang, Y. (2019). Integration of Robot and IIoT over the OPC Unified Architecture.

(2019). International Automatic Control Conference (CACS), 1-6.

 Google Scholar CrossRef/DOI

[5] Tarek Al-Geddawy, (2020). A Digital Twin Creation Method for an Opensource Low-cost

Changeable Learning Factory. Procedia Manufacturing, 5(1), 1799-1805.

 Google Scholar CrossRef/DOI

[6] Hemmatpour, M., Ghazivakili, M., Montrucchio, B. and Rebaudengo, M. (2017). DIIG: A

Distributed Industrial IoT Gateway. IEEE 41st Annual Computer Software and Applications

Conference (COMPSAC), 755-759.

https://sourceforge.net/projects/qmodmaster/files/latest/download
https://ieeexplore.ieee.org/abstract/document/7225424/
https://ieeexplore.ieee.org/abstract/document/7225424/
https://doi.org/10.1109/ICSTM.2015.7225424
https://doi.org/10.1109/ICSTM.2015.7225424
https://www.mdpi.com/423734
https://www.mdpi.com/423734
https://doi.org/10.3390/fi11030066
https://doi.org/10.3390/fi11030066
https://ieeexplore.ieee.org/abstract/document/6648029/
https://ieeexplore.ieee.org/abstract/document/6648029/
https://doi.org/10.1109/ETFA.2013.6648029
https://doi.org/10.1109/ETFA.2013.6648029
https://ieeexplore.ieee.org/abstract/document/9024732/
https://ieeexplore.ieee.org/abstract/document/9024732/
https://doi.org/10.1109/CACS47674.2019.9024732
https://doi.org/10.1109/CACS47674.2019.9024732
https://www.sciencedirect.com/science/article/pii/S2351978920321284
https://www.sciencedirect.com/science/article/pii/S2351978920321284
https://doi.org/10.1016/j.promfg.2020.10.250
https://doi.org/10.1016/j.promfg.2020.10.250

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 2, November 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 131

 Google Scholar CrossRef/DOI

[7] Qingdao Huang, Qianzhong She and Xiaofeng Lin, (2010). Adaptive fuzzy PID temperature control

system based on OPC and Modbus/TCP protocol, 2nd International Asia Conference on

Informatics in Control, Automation and Robotics (CAR 2010), 2010, 238-241.

 Google Scholar CrossRef/DOI

[8] Maldonado V., Gamboa S., Trujillo M.F., Rodas A. (2021) Development of an Industrial Data

Server for Modbus TCP Protocol. In: Botto-Tobar M., S. Gómez O., Rosero Miranda R., Díaz

Cadena A. (eds) Advances in Emerging Trends and Technologies. ICAETT 2020. Advances in

Intelligent Systems and Computing, vol 1302. Springer, Cham.

 Google Scholar CrossRef/DOI

[9] Xiang, X., Liu, H., Yu, C. and Niu, Z. (2016). A newly developed hybrid underwater robotic vehicle

(HURV): Communication design and tests. OCEANS 2016 - Shanghai, 2016, 1-6.

 Google Scholar CrossRef/DOI

[10] Hewei, G. Xingdong, L. and Yangwei, W. (2018). Design of Control System for Educational Robot

with Six-Degree Freedom. 11th International Workshop on Human-Friendly Robotics (HFR),

2018, 85-90.

 Google Scholar CrossRef/DOI

[11] Jingran, W., Mingzhe, L., Aidong, X., Bo, H., Xiaojia, H. and Xiufang, Z. (2020). Research and

Implementation of Secure Industrial Communication Protocols. IEEE International Conference on

Artificial Intelligence and Information Systems (ICAIIS), 2020, 314-317.

 Google Scholar CrossRef/DOI

https://ieeexplore.ieee.org/abstract/document/8029694/
https://ieeexplore.ieee.org/abstract/document/8029694/
https://doi.org/10.1109/COMPSAC.2017.110
https://doi.org/10.1109/COMPSAC.2017.110
https://ieeexplore.ieee.org/abstract/document/5456559/
https://ieeexplore.ieee.org/abstract/document/5456559/
https://doi.org/10.1109/CAR.2010.5456559
https://doi.org/10.1109/CAR.2010.5456559
https://link.springer.com/chapter/10.1007/978-3-030-63665-4_2
https://link.springer.com/chapter/10.1007/978-3-030-63665-4_2
https://link.springer.com/chapter/10.1007/978-3-030-63665-4_2#:~:text=DOI-,https%3A//doi.org/10.1007/978-3-030-63665-4_2,-Publisher%20Name
https://link.springer.com/chapter/10.1007/978-3-030-63665-4_2#:~:text=DOI-,https%3A//doi.org/10.1007/978-3-030-63665-4_2,-Publisher%20Name
https://ieeexplore.ieee.org/abstract/document/7485715/
https://ieeexplore.ieee.org/abstract/document/7485715/
https://doi.org/10.1109/OCEANSAP.2016.7485715
https://doi.org/10.1109/OCEANSAP.2016.7485715
https://ieeexplore.ieee.org/abstract/document/8633500/
https://ieeexplore.ieee.org/abstract/document/8633500/
https://doi.org/10.1109/HFR.2018.8633500
https://doi.org/10.1109/HFR.2018.8633500
https://ieeexplore.ieee.org/document/9194854
https://ieeexplore.ieee.org/document/9194854
https://doi.org/10.1109/ICAIIS49377.2020.9194854
https://doi.org/10.1109/ICAIIS49377.2020.9194854

